Harnessing the Nutritional Power of Salmon for Your Pup
Harnessing genomics to fast-track genetic improvement in aquaculture
Anderson, J. L., Asche, F., Garlock, T. & Chu, J. Aquaculture: its role in the future of food. Front. Econ. Glob. 17, 159173 (2017).
Article Google Scholar
Food and Agricultural Organization. FAO Yearbook of Fishery and Aquaculture Statistics 2017. (FAO, 2019).
Longo, S. B., Clark, B., York, R. & Jorgenson, A. K. Aquaculture and the displacement of fisheries captures. Conserv. Biol. 33, cobi.13295 (2019).
Article Google Scholar
Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 52955300 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ahmed, N., Thompson, S. & Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manage. 63, 159172 (2019).
Article PubMed Google Scholar
Jennings, S. et al. Aquatic food security: insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish Fish. 17, 893938 (2016).
Article Google Scholar
Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466488 (2017).
Article Google Scholar
Charrier, B., Rolland, E., Gupta, V. & Reddy, C. R. K. Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques. Front. Plant. Sci. 6, 127 (2015).
PubMed PubMed Central Google Scholar
Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32, 113 (2017).
Article CAS Google Scholar
Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 1325713263 (2014).
Article CAS PubMed PubMed Central Google Scholar
Teletchea, F. Animal Domestication: A Brief Overview (IntechOpen, 2019).
Georges, M., Charlier, C. & Hayes, B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 20, 135156 (2019).
Article CAS PubMed Google Scholar
Food and Agricultural Organization. The state of the worlds aquatic genetic resources for food and agriculture (FAO, 2019). This report highlights the value of genetic resources and their potential to enhance the contributions of aquaculture to food security.
Gjedrem, T. & Rye, M. Selection response in fish and shellfish: a review. Rev. Aquac. 10, 168179 (2018).
Article Google Scholar
Hill, W. G. Is continued genetic improvement of livestock sustainable? Genetics 202, 877881 (2016).
Article CAS PubMed PubMed Central Google Scholar
Abdelrahman, H. et al. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics 18, 191 (2017).
Article PubMed PubMed Central Google Scholar
Mignon-Grasteau, S. et al. Genetics of adaptation and domestication in livestock. Livest. Prod. Sci. 93, 314 (2005).
Article Google Scholar
Driscoll, C. A., Macdonald, D. W. & OBrien, S. J. From wild animals to domestic pets, an evolutionary view of domestication. Proc. Natl Acad. Sci. USA 106, 99719978 (2009).
Article CAS PubMed PubMed Central Google Scholar
Harland, J. The origins of aquaculture. Nat. Ecol. Evol. 3, 13781379 (2019).
Article PubMed Google Scholar
Nguyen, N. H. Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: achievements, lessons and challenges. Fish Fish. 17, 483506 (2016).
Article Google Scholar
Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350353, 117129 (2012). This review suggests that only 10% of aquaculture production is derived from selective breeding programmes.
Article Google Scholar
Janssen, K., Chavanne, H., Berentsen, P. & Komen, H. Impact of selective breeding on European aquaculture. Aquaculture 472, 816 (2017).
Article Google Scholar
Kumar, G., Engle, C. & Tucker, C. Factors driving aquaculture technology adoption. J. World Aquac. Soc. 49, 447476 (2018).
Article Google Scholar
Janssen, K., Saatkamp, H. & Komen, H. Cost-benefit analysis of aquaculture breeding programs. Genet. Sel. Evol. 50, 2 (2018).
Article PubMed PubMed Central Google Scholar
Teletchea, F. & Fontaine, P. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish. 15, 181195 (2014).
Article Google Scholar
Lien, S. et al. The Atlantic salmon genome provides insights into rediploidization. Nature 533, 200205 (2016).
Article CAS PubMed PubMed Central Google Scholar
Xu, P. et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 46, 12121219 (2014).
Article CAS PubMed Google Scholar
Ludwig, A., Belfiore, N. M., Pitra, C., Svirsky, V. & Jenneckens, I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158, 12031215 (2001).
CAS PubMed PubMed Central Google Scholar
Plough, L. V. Genetic load in marine animals: a review. Curr. Zool. 62, 567579 (2016).
Article PubMed PubMed Central Google Scholar
Hollenbeck, C. M. & Johnston, I. A. Genomic tools and selective breeding in molluscs. Front. Genet. 9, 253 (2018).
Article PubMed PubMed Central Google Scholar
Zhang, X. et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 10, 356 (2019).
Article CAS PubMed PubMed Central Google Scholar
Macqueen, D. J. et al. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 18, 484 (2017). The FAASG white paper, which followed on from the FAANG equivalent (reference 88), describes an initiative to improve annotation of all salmonid genomes, and similar initiatives are likely to follow for other major aquaculture species.
Article PubMed PubMed Central Google Scholar
van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The third revolution in sequencing technology. Trends Genet. 34, 666681 (2018).
Article CAS PubMed Google Scholar
Feron, R. et al. Characterization of a Y-specific duplication/insertion of the anti-Mullerian hormone type II receptor gene based on a chromosome-scale genome assembly of yellow perch, Perca flavescens. Mol. Ecol. Resour. 20, 531543 (2020).
Article CAS PubMed PubMed Central Google Scholar
Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376 (2008). The discovery of RAD-seq and its applications have been instrumental for application of genomics to genetic improvement of aquaculture species.
Article CAS PubMed PubMed Central Google Scholar
Campbell, C. R., Poelstra, J. W. & Yoder, A. D. What is speciation genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol. J. Linn. Soc. 124, 561583 (2018).
Article Google Scholar
Robledo, D., Palaiokostas, C., Bargelloni, L., Martnez, P. & Houston, R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev. Aquac. 10, 670682 (2018).
Article PubMed Google Scholar
Fernndez, J., Toro, M. ., Sonesson, A. K. & Villanueva, B. Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress. Front. Genet. 5, 414 (2014).
Article CAS PubMed PubMed Central Google Scholar
You, W. & Hedgecock, D. Boom-and-bust production cycles in animal seafood aquaculture. Rev. Aquacult. 11, 10451060 (2018).
Article Google Scholar
Doyle, R. W. Inbreeding and disease in tropical shrimp aquaculture: a reappraisal and caution. Aquac. Res. 47, 2135 (2016).
Article Google Scholar
Ashton, D. T., Ritchie, P. A. & Wellenreuther, M. High-density linkage map and QTLs for growth in snapper (Chrysophrys auratus). G3 9, 10271035 (2019).
CAS PubMed PubMed Central Google Scholar
Wellenreuther, M., Le Luyer, J., Cook, D., Ritchie, P. A. & Bernatchez, L. Domestication and temperature modulate gene expression signatures and growth in the Australasian snapper Chrysophrys auratus. G3 9, 105116 (2019).
Article CAS PubMed Google Scholar
Ashton, D. T., Hilario, E., Jaksons, P., Ritchie, P. A. & Wellenreuther, M. Genetic diversity and heritability of economically important traits in captive Australasian snapper (Chrysophrys auratus). Aquaculture 505, 190198 (2019).
Article Google Scholar
Devlin, R. H. & Nagahama, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191364 (2002).
Article CAS Google Scholar
Kobayashi, Y., Nagahama, Y. & Nakamura, M. Diversity and plasticity of sex determination and differentiation in fishes. Sex. Dev. 7, 115125 (2013).
Article CAS PubMed Google Scholar
Martnez, P. et al. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front. Genet. 5, 340 (2014).
PubMed PubMed Central Google Scholar
Palaiokostas, C. et al. Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) Using RAD sequencing. PLoS One 8, e68389 (2013).
Article CAS PubMed PubMed Central Google Scholar
Palaiokostas, C. et al. Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing. BMC Genomics 14, 566 (2013).
Article CAS PubMed PubMed Central Google Scholar
Palaiokostas, C. et al. A new SNP-based vision of the genetics of sex determination in European sea bass (Dicentrarchus labrax). Genet. Sel. Evol. 47, 68 (2015).
Article CAS PubMed PubMed Central Google Scholar
Shi, X. et al. Female-specific SNP markers provide insights into a WZ/ZZ sex determination system for mud crabs Scylla paramamosain, S. tranquebarica and S. serrata with a rapid method for genetic sex identification. BMC Genomics 19, 981 (2018).
Article CAS PubMed PubMed Central Google Scholar
Vandeputte, M. & Haffray, P. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front. Genet. 5, 432 (2014).
Article CAS PubMed PubMed Central Google Scholar
Khang, P. Van, Phuong, T. H., Dat, N. K., Knibb, W. & Nguyen, N. H. An 8-year breeding program for Asian seabass Lates calcarifer: genetic evaluation, experiences, and challenges. Front. Genet. 9, 191 (2018).
Article PubMed PubMed Central Google Scholar
Reed, D. H. & Frankham, R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55, 10951103 (2001).
Article CAS PubMed Google Scholar
Bentsen, H. B. et al. Genetic improvement of farmed tilapias: growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticus. Aquaculture 160, 145173 (1998).
Article Google Scholar
Govindaraju, D. R. An elucidation of over a century old enigma in geneticsheterosis. PLoS Biol. 17, e3000215 (2019).
Article CAS PubMed PubMed Central Google Scholar
Fuji, K. et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272, 291295 (2007).
Article Google Scholar
Fuji, K. et al. Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254, 203210 (2006).
Article CAS Google Scholar
Liu, S. et al. Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population. Front. Genet. 9, 286 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ayllon, F. et al. The vgll3 locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salar L.) males. PLoS Genet. 11, e1005628 (2015).
Article CAS PubMed PubMed Central Google Scholar
Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405408 (2015). Together with reference 59, this study shows the impact of a major effect locus on an important life history and production trait in salmon.
Article CAS PubMed Google Scholar
Gonen, S. et al. Mapping and validation of a major QTL affecting resistance to pancreas disease (salmonid alphavirus) in Atlantic salmon (Salmo salar). Heredity 115, 405414 (2015).
Article CAS PubMed PubMed Central Google Scholar
Boison, S. et al. QTLs associated with resistance to cardiomyopathy syndrome in Atlantic salmon. J. Hered. 110, 727737 (2019).
Article PubMed PubMed Central Google Scholar
Hillestad, B. & Moghadam, H. K. Genome-wide association study of piscine myocarditis virus (PMCV) resistance in Atlantic salmon (Salmo salar). J. Hered. 110, 720726 (2019).
Article PubMed Google Scholar
Gu, X. H. et al. Identifying a major QTL associated with salinity tolerance in Nile tilapia using QTL-Seq. Mar. Biotechnol. 20, 98107 (2018).
Article CAS Google Scholar
Houston, R. D. Future directions in breeding for disease resistance in aquaculture species. Rev. Bras. Zootec. 46, 545551 (2017).
Article Google Scholar
Zenger, K. R. et al. Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front. Genet. 9, 693 (2019).
Article PubMed PubMed Central Google Scholar
Gjedrem, T. & Baranski, M. Selective Breeding in Aquaculture: an Introduction (Springer, 2010).
Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829 (2001). This study highlights the potential of use of genome-wide markers for prediction of breeding values, a technique now widely applied in advanced aquaculture breeding programmes.
CAS PubMed PubMed Central Google Scholar
Houston, R. D. et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15, 90 (2014).
Article CAS PubMed PubMed Central Google Scholar
Odegrd, J. et al. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front. Genet. 5, 402 (2014). This is the first empirical study of genomic selection in aquaculture, highlighting the benefit compared with pedigree approaches for predicting breeding values.
PubMed PubMed Central Google Scholar
Tsai, H. Y. et al. The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar). BMC Genet. 16, 51 (2015).
Article PubMed PubMed Central Google Scholar
Norris, A. Application of genomics in salmon aquaculture breeding programs by Ashie Norris: who knows where the genomic revolution will lead us? Mar. Genomics 36, 1315 (2017).
Article PubMed Google Scholar
Lillehammer, M., Meuwissen, T. H. E. & Sonesson, A. K. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values. Genet. Sel. Evol. 45, 39 (2013).
Article PubMed PubMed Central Google Scholar
Daetwyler, H. D., Calus, M. P. L., Pong-Wong, R., de los Campos, G. & Hickey, J. M. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193, 347365 (2013).
Article Google Scholar
Kriaridou, C., Tsairidou, S., Houston, R. D. & Robledo, D. Genomic prediction using low density marker panels in aquaculture: perform across species, traits, genotyping platforms. Front. Genet. 11, 124 (2020).
Article PubMed PubMed Central Google Scholar
Tsai, H. Y. et al. Construction and annotation of a high density SNP linkage map of the Atlantic salmon (Salmo salar) genome. G3 6, 21732179 (2016).
Article CAS PubMed PubMed Central Google Scholar
Palaiokostas, C. et al. Optimizing genomic prediction of host resistance to koi herpesvirus disease in carp. Front. Genet. 10, 543 (2019).
Article CAS PubMed PubMed Central Google Scholar
Campbell, N. R., Harmon, S. A. & Narum, S. R. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Resour. 15, 855867 (2015).
Article CAS PubMed Google Scholar
Tsai, H.-Y. et al. Genotype imputation to improve the cost-efficiency of genomic selection in farmed Atlantic salmon. G3 7, 13771383 (2017). This study highlights a potentially cost-efficient approach to genomic selection in aquaculture that could help democratize the use of the technology to smaller aquaculture sectors.
Article CAS PubMed PubMed Central Google Scholar
Yoshida, G. M. et al. Accuracy of genotype imputation and genomic predictions in a two-generation farmed Atlantic salmon population using high-density and low-density SNP panels. Aquaculture 491, 147154 (2018).
Article Google Scholar
Tsairidou, S., Hamilton, A., Robledo, D., Bron, J. E. & Houston, R. D. Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon. G3 10, 581590 (2020).
Article PubMed Google Scholar
Ni, G., Cavero, D., Fangmann, A., Erbe, M. & Simianer, H. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture. Genet. Sel. Evol. 49, 8 (2017).
Article PubMed PubMed Central Google Scholar
MacLeod, I. M. et al. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics 17, 144 (2016).
Article CAS PubMed PubMed Central Google Scholar
Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 96 (2018).
Article CAS PubMed Central Google Scholar
Gavery, M. R. & Roberts, S. B. Epigenetic considerations in aquaculture. PeerJ 5, e4147 (2017).
Article CAS PubMed PubMed Central Google Scholar
Giuffra, E., Tuggle, C. K. & FAANG Consortium. Functional Annotation of Animal Genomes (FAANG): current achievements and roadmap. Annu. Rev. Anim. Biosci. 7, 6588 (2019).
Article CAS PubMed Google Scholar
Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).
Article CAS PubMed PubMed Central Google Scholar
Andersson, L. et al. Coordinated international action to accelerate genome-to-phenome with FAANG, the functional annotation of animal genomes project. Genome Biol. 16, 57 (2015).
Article CAS PubMed PubMed Central Google Scholar
Saberioon, M., Gholizadeh, A., Cisar, P., Pautsina, A. & Urban, J. Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev. Aquac. 9, 369387 (2017).
Article Google Scholar
Fre, M. et al. Precision fish farming: a new framework to improve production in aquaculture. Biosyst. Eng. 173, 176193 (2018).
Article Google Scholar
Liakos, K. et al. Machine learning in agriculture: a review. Sensors 18, 2674 (2018).
Article PubMed Central Google Scholar
Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P. & Mendiola, D. Energy use in recirculating aquaculture systems (RAS): a review. Aquac. Eng. 81, 5770 (2018).
Article Google Scholar
Sae-Lim, P., Gjerde, B., Nielsen, H. M., Mulder, H. & Kause, A. A review of genotype-by-environment interaction and micro-environmental sensitivity in aquaculture species. Rev. Aquac. 8, 369393 (2016).
Article Google Scholar
Sae-Lim, P. et al. Genetic (co)variance of rainbow trout (Oncorhynchus mykiss) body weight and its uniformity across production environments. Genet. Sel. Evol. 47, 46 (2015).
Article PubMed PubMed Central Google Scholar
Saltz, J. B. et al. Why does the magnitude of genotype-by-environment interaction vary? Ecol. Evol. 8, 63426353 (2018).
Article PubMed PubMed Central Google Scholar
Eknath, A. E. & Acosta, B. O. Genetic Improvement of Farmed Tilapias (GIFT) Project: Final Report, March 1988December 1997 (ICLARM, 1998).
Mulder, H. A. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front. Genet. 7, 178 (2016).
Article CAS PubMed PubMed Central Google Scholar
Luyer, J. Le et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc. Natl Acad. Sci. USA 114, 1296412969 (2017).
Article CAS PubMed PubMed Central Google Scholar
Jonsson, B. & Jonsson, N. Early environment influences later performance in fishes. J. Fish. Biol. 85, 151188 (2014).
Article CAS PubMed Google Scholar
Moghadam, H., Mrkre, T. & Robinson, N. Epigenetics potential for programming fish for aquaculture? J. Mar. Sci. Eng. 3, 175192 (2015).
Article Google Scholar
Geurden, I. et al. Early-feeding exposure to a plant-based diet improves its future acceptance and utilization in rainbow trout. Commun. Agric. Appl. Biol. Sci. 78, 157160 (2013).
CAS PubMed Google Scholar
Uren Webster, T. M., Consuegra, S., Hitchings, M. & Garcia de Leaniz, C. Interpopulation variation in the Atlantic salmon microbiome reflects environmental and genetic diversity. Appl. Environ. Microbiol. 84, e0069118 (2018).
Article PubMed PubMed Central Google Scholar
Robinson, N. A., Johnsen, H., Moghadam, H., Andersen, . & Tveiten, H. Early developmental stress affects subsequent gene expression response to an acute stress in Atlantic salmon: an approach for creating robust fish for aquaculture? G3 9, 15971611 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhao, L. et al. Transgenerational acclimation to seawater acidification in the Manila clam Ruditapes philippinarum: Preferential uptake of metabolic carbon. Sci. Total. Environ. 627, 95103 (2018).
Article CAS PubMed Google Scholar
Parker, L. M., OConnor, W. A., Raftos, D. A., Prtner, H.-O. & Ross, P. M. Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS One 10, e0132276 (2015).
Article CAS PubMed PubMed Central Google Scholar
Frank, R. et al. Isogenic lines in fish a critical review. Rev. Aquac. https://doi.org/10.1111/raq.12389 (2019)
Article Google Scholar
Goddard, M. E. & Whitelaw, E. The use of epigenetic phenomena for the improvement of sheep and cattle. Front. Genet. 5, 247 (2014).
Article CAS PubMed PubMed Central Google Scholar
Brugman, S. et al. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr. 5, 80 (2018).
Article CAS PubMed PubMed Central Google Scholar
Derome, N. Microbial Communities in Aquaculture Ecosystems: Improving Productivity and Sustainability (Springer, 2019).
Smith, C. C. R., Snowberg, L. K., Gregory Caporaso, J., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 25152526 (2015).
Article CAS PubMed PubMed Central Google Scholar
Li, W. et al. Genetic effects on the gut microbiota assemblages of hybrid fish from parents with different feeding habits. Front. Microbiol. 9, 2972 (2018).
Article PubMed PubMed Central Google Scholar
Cornejo-Granados, F. et al. Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Sci. Rep. 7, 11783 (2017).
Article CAS PubMed PubMed Central Google Scholar
Llewellyn, M. S., Boutin, S., Hoseinifar, S. H. & Derome, N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 5, 207 (2014).
Article PubMed PubMed Central Google Scholar
Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 1510315110 (2009).
Article CAS PubMed PubMed Central Google Scholar
Wang, G.-D., Xie, H.-B., Peng, M.-S., Irwin, D. & Zhang, Y.-P. Domestication genomics: evidence from animals. Annu. Rev. Anim. Biosci. 2, 6584 (2014).
Article CAS PubMed Google Scholar
Lopez Dinamarca, M. E. et al. Multiple selection signatures in farmed Atlantic salmon adapted to different environments across Hemispheres. Front. Genet. 10, 901 (2019).
Article CAS Google Scholar
Lpez, M. E. et al. Comparing genomic signatures of domestication in two Atlantic salmon (Salmo salar L.) populations with different geographical origins. Evol. Appl. 12, 137156 (2019).
Article PubMed Google Scholar
Glover, K. A. et al. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish Fish. 18, 890927 (2017). This review highlights the impact of interaction between farmed salmon escapees and wild salmon, showing the need to avoid interbreeding as farmed fish become more domesticated.
Article Google Scholar
Roberge, C., Einum, S., Guderley, H. & Bernatchez, L. Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon. Mol. Ecol. 15, 920 (2005).
Article CAS Google Scholar
Skaala, . et al. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol. Appl. 12, 10011016 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443466 (2009).
Article PubMed Google Scholar
Varney, R. L., Watts, J. C. & Wilbur, A. E. Genetic impacts of a commercial aquaculture lease on adjacent oyster populations. Aquaculture 491, 310320 (2018).
Article Google Scholar
Hornick, K. M. & Plough, L. V. Tracking genetic diversity in a large-scale oyster restoration program: effects of hatchery propagation and initial characterization of diversity on restored vs. wild reefs. Heredity 123, 92105 (2019).
Article PubMed PubMed Central Google Scholar
Hindar, K., Fleming, I. A., McGinnity, P. & Diserud, O. Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES J. Mar. Sci. 63, 12341247 (2006).
Article CAS Google Scholar
Hansen, M. M., Limborg, M. T., Ferchaud, A.-L. & Pujolar, J.-M. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations. BMC Evol. Biol. 14, 122 (2014).
Article PubMed PubMed Central Google Scholar
Horreo, J. L. et al. Long-term effects of stock transfers: synergistic introgression of allochthonous genomes in salmonids. J. Fish. Biol. 85, 292306 (2014).
Article CAS PubMed Google Scholar
Heggberget, T. G. et al. Interactions between wild and cultured Atlantic salmon: a review of the Norwegian experience. Fish. Res. 18, 123146 (1993).
Article Google Scholar
Naylor, R. et al. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience 55, 427437 (2005).
Article Google Scholar
OFlynn, F., McGeachy, S. A., Friars, G. W., Benfey, T. J. & Bailey, J. K. Comparisons of cultured triploid and diploid Atlantic salmon (Salmo salar L.). ICES J. Mar. Sci. 54, 11601165 (1997).
Google Scholar
Piferrer, F. et al. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293, 125156 (2009).
Article Google Scholar
Wargelius, A. et al. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci. Rep. 6, 21284 (2016). This study shows the potential of genome editing using CRISPR to induce sterility in farmed fish.
Article CAS PubMed PubMed Central Google Scholar
Adams, S. L., Smith, J. F., Taylor, J., McGowan, L. T. & Tervit, H. R. in Cryopreservation and Freeze-Drying Protocols (eds Wolkers, W., & Oldenhof, H.) 329336 (Springer, 2015).
Goswami, M., Mishra, A., Ninawe, A., Trudeau, V. & Lakra, W. Bio-banking: an emerging approach for conservation of fish germplasm. Poultry Fish. Wildl. Sci. 4, (2016).
Robles, V. et al. Biology of teleost primordial germ cells (PGCs) and spermatogonia: biotechnological applications. Aquaculture 472, 420 (2017).
Article CAS Google Scholar
Food and Agricultural Organization. Genebank Standards for Plant Genetic Resources for Food and Agriculture. (FAO, 2014).
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819823 (2013).
Article CAS PubMed PubMed Central Google Scholar
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823826 (2013).
Article CAS PubMed PubMed Central Google Scholar
Edvardsen, R. B., Leininger, S., Kleppe, L., Skaftnesmo, K. O. & Wargelius, A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One 9, e108622 (2014). This study is the first to apply CRISPR genome editing to an aquaculture species, and highlights the possibility of creating double-allele-knockout individuals in the F0 generation.
Article CAS PubMed PubMed Central Google Scholar
Gratacap, R. L., Wargelius, A., Edvardsen, R. B. & Houston, R. D. Potential of genome editing to improve aquaculture breeding and production. Trends Genet. 35, 672684 (2019).
Article CAS PubMed Google Scholar
Sato, M. & Nakamura, S. Possible Production of Genome-Edited Animals Using Gene-Engineered Sperm (eds Chen, Y.C. & Chen, S.J.) (IntechOpen, 2019).
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 8487 (2014).
Article CAS PubMed Google Scholar
Gratacap, R. L. et al. Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. Preprint at bioRxiv https://doi.org/10.1101/734442 (2019).
Article Google Scholar
Jenko, J. et al. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet. Sel. Evol. 47, 55 (2015).
Article CAS PubMed PubMed Central Google Scholar
Burkard, C. et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J. Virol. 92, JVI.00415-18 (2018).
Article Google Scholar
Zohar, Y. Endocrinology and fish farming: aspects in reproduction, growth, and smoltification. Fish Physiol. Biochem. 7, 395405 (1989).
Article CAS PubMed Google Scholar
Wong, T.-T. & Zohar, Y. Production of reproductively sterile fish: a mini-review of germ cell elimination technologies. Gen. Comp. Endocrinol. 221, 38 (2015).
Article CAS PubMed Google Scholar
Li, M. et al. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197, 591599 (2014).
Article CAS PubMed PubMed Central Google Scholar
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442451 (2013).
Article CAS PubMed PubMed Central Google Scholar
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 11731183 (2013).
Article CAS PubMed PubMed Central Google Scholar
Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).
Article CAS PubMed PubMed Central Google Scholar
Tait-Burkard, C. et al. Livestock 2.0 genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 19, 204 (2018).
Article CAS PubMed PubMed Central Google Scholar
Bruce, A. Genome edited animals: learning from GM crops? Transgenic Res. 26, 385398 (2017).
Article CAS PubMed PubMed Central Google Scholar
Waltz, E. First genetically engineered salmon sold in Canada. Nature 548, 148 (2017).
Article CAS PubMed Google Scholar
Yoshizaki, G. & Yazawa, R. Application of surrogate broodstock technology in aquaculture. Fish. Sci. 85, 429437 (2019).
Article CAS Google Scholar
Okutsu, T., Shikina, S., Kanno, M., Takeuchi, Y. & Yoshizaki, G. Production of trout offspring from triploid salmon parents. Science 317, 1517 (2007).
Article CAS PubMed Google Scholar
Sid, H. & Schusser, B. Applications of gene editing in chickens: a new era is on the horizon. Front. Genet. 9, 456 (2018).
Article CAS PubMed PubMed Central Google Scholar
Shelley, C. & Lovatelli, A. Mud crab aquaculture a practical manual. FAO Fisheries and Aquaculture Technical Paper No. 567 (FAO, 2011).
Xu, S., Zhao, L., Xiao, S. & Gao, T. Whole genome resequencing data for three rockfish species of Sebastes. Sci. Data 6, 97 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tsai, H.-Y. et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16, 969 (2015).
Article CAS PubMed PubMed Central Google Scholar
Tsai, H.-Y. et al. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet. Sel. Evol. 48, 47 (2016).
Article PubMed PubMed Central Google Scholar
Correa, K., Bangera, R., Figueroa, R., Lhorente, J. P. & Yez, J. M. The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar). Genet. Sel. Evol. 49, 15 (2017).
Article PubMed PubMed Central Google Scholar
Robledo, D., Matika, O., Hamilton, A. & Houston, R. D. Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon. G3 8, 11951203 (2018).
Article CAS PubMed PubMed Central Google Scholar
Boison, S. A., Gjerde, B., Hillestad, B., Makvandi-Nejad, S. & Moghadam, H. K. Genomic and transcriptomic analysis of amoebic gill disease resistance in Atlantic salmon (Salmo salar L.). Front. Genet. 10, 68 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bangera, R., Correa, K., Lhorente, J. P., Figueroa, R. & Yez, J. M. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics 18, 121 (2017).
Article CAS PubMed PubMed Central Google Scholar
Horn, S. S., Meuwissen, T. H. E., Moghadam, H., Hillestad, B. & Sonesson, A. K. Accuracy of selection for omega-3 fatty acid content in Atlantic salmon fillets. Aquaculture 519, 734767 (2019).
Article CAS Google Scholar
Vallejo, R. L. et al. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a major contributing factor. J. Anim. Breed. Genet. 135, 263274 (2018).
Article CAS Google Scholar
Vallejo, R. L. et al. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet. Sel. Evol. 49, 17 (2017).
Article CAS PubMed PubMed Central Google Scholar
Vallejo, R. L. et al. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models. Front. Genet. 7, 96 (2016).
Article CAS PubMed PubMed Central Google Scholar
Yoshida, G. M., Carvalheiro, R., Rodrguez, F. H., Lhorente, J. P. & Yez, J. M. Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout. Genomics 111, 127132 (2019).
Article CAS PubMed Google Scholar
Yoshida, G. M. et al. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout. G3 8, 719726 (2018).
Article PubMed Google Scholar
Vallejo, R. L. et al. Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population. Genet. Sel. Evol. 51, 47 (2019).
Article CAS PubMed PubMed Central Google Scholar
Silva, R. M. O. et al. Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations. Genet. Sel. Evol. 51, 42 (2019).
Article CAS PubMed PubMed Central Google Scholar
Barra, A. et al. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3 8, 11831194 (2018).
Article CAS PubMed PubMed Central Google Scholar
Palaiokostas, C., Kocour, M., Prchal, M. & Houston, R. D. Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing. sing genotyping by sequencing. Front. Genet. 9, 82 (2018).
Article CAS PubMed PubMed Central Google Scholar
Yoshida, G. M. et al. Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile tilapia (Oreochromis niloticus). G3 9, 25972607 (2019).
Article CAS PubMed PubMed Central Google Scholar
Joshi, R., Skaarud, A., de Vera, M., Alvarez, A. T. & degrd, J. Genomic prediction for commercial traits using univariate and multivariate approaches in Nile tilapia (Oreochromis niloticus). Aquaculture 516, 734641 (2020).
Article CAS Google Scholar
Palaiokostas, C. et al. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet. Sel. Evol. 50, 30 (2018).
Article CAS PubMed PubMed Central Google Scholar
Palaiokostas, C., Ferraresso, S., Franch, R., Houston, R. D. & Bargelloni, L. Genomic prediction of resistance to pasteurellosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. G3 6, 36933700 (2016).
Article CAS PubMed PubMed Central Google Scholar
Aslam, M. L. et al. Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing. BMC Genet. 19, 43 (2018).
Article CAS PubMed PubMed Central Google Scholar
Saura, M. et al. Disentangling genetic variation for resistance and endurance to scuticociliatosis in turbot using pedigree and genomic information. Front. Genet. 10, 539 (2019).
Article PubMed PubMed Central Google Scholar
Liu, Y. et al. Genomic selection using BayesC and GBLUP for resistance against edwardsiella tarda in Japanese flounder (Paralichthys olivaceus). Mar. Biotechnol. 20, 559565 (2018).
Article CAS Google Scholar
Garcia, A. L. S. et al. Development of genomic predictions for harvest and carcass weight in channel catfish. Genet. Sel. Evol. 50, 66 (2018).
Article PubMed PubMed Central Google Scholar
Dong, L., Xiao, S., Wang, Q. & Wang, Z. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). BMC Genomics 17, 460 (2016).
Article CAS PubMed PubMed Central Google Scholar
Nguyen, N. H., Premachandra, H. K. A., Kilian, A. & Knibb, W. Genomic prediction using DArT-Seq technology for yellowtail kingfish Seriola lalandi. BMC Genomics 19, 107 (2018).
Article PubMed PubMed Central Google Scholar
Liu, G. et al. Evaluation of genomic selection for seven economic traits in yellow drum (Nibea albiflora). Mar. Biotechnol. 21, 806812 (2019).
Article CAS Google Scholar
Gutierrez, A. P., Matika, O., Bean, T. P. & Houston, R. D. Genomic selection for growth traits in Pacific Oyster (Crassostrea gigas): potential of low-density marker panels for breeding value prediction. Front. Genet. 9, 391 (2018).
Article CAS PubMed PubMed Central Google Scholar
Gutierrez, A. P. et al. Potential of genomic selection for improvement of resistance to ostreid herpes virus in Pacific oyster (Crassostrea gigas). Anim. Genet. 51, 249257 (2020).
Article CAS PubMed Google Scholar
Dou, J. et al. Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci. Rep. 6, 19244 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. et al. Predicting growth traits with genomic selection methods in Zhikong scallop (Chlamys farreri). Mar. Biotechnol. 20, 769779 (2018).
Article CAS Google Scholar
Wang, Q. et al. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genet. 18, 45 (2017).
Article PubMed PubMed Central Google Scholar
Wang, Q., Yu, Y., Li, F., Zhang, X. & Xiang, J. Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei. Chinese J. Oceanol. Limnol. 35, 12211229 (2017).
Article Google Scholar
Wang, Q. et al. Evaluation on the genomic selection in Litopenaeus vannamei for the resistance against Vibrio parahaemolyticus. Aquaculture 505, 212216 (2019).
Article Google Scholar
Nguyen, N. H., Phuthaworn, C. & Knibb, W. Genomic prediction for disease resistance to Hepatopancreatic parvovirus and growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis. Genomics 112, 20212027 (2020).
Article CAS PubMed Google Scholar
Zhang, X. et al. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol. 15, e2003790 (2017).
Article CAS PubMed PubMed Central Google Scholar
Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 115, 62496254 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wanninger, A. & Wollesen, T. The evolution of molluscs. Biol. Rev. Camb. Philos. Soc. 94, 102 (2018).
Article PubMed Central Google Scholar
Wolfe, J. M. et al. A phylogenomic framework, evolutionary timeline and genomic resources for comparative studies of decapod crustaceans. Proc. R. Soc. B Biol. Sci. 286, 20190079 (2019).
Article Google Scholar
Dohrmann, M. & Wrheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).
Article CAS PubMed PubMed Central Google Scholar
Plazzi, F. & Passamonti, M. Towards a molecular phylogeny of mollusks: bivalves early evolution as revealed by mitochondrial genes. Mol. Phylogenet. Evol. 57, 641657 (2010).
Article CAS PubMed Google Scholar
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 18121819 (2017).
Article CAS PubMed Google Scholar
Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700707 (2002).
Article CAS PubMed Google Scholar
Bernatchez, L. et al. Harnessing the power of genomics to secure the future of seafood. Trends Ecol. Evol. 32, 665680 (2017).
Article PubMed Google Scholar
Yue, G. H. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish. 15, 376396 (2014).
Article Google Scholar
Brooker, A. J. et al. Sustainable production and use of cleaner fish for the biological control of sea lice: recent advances and current challenges. Vet. Rec. 183, 383383 (2018).
Article PubMed Google Scholar
Sveier, H. & Breck, O. in Cleaner Fish Biology and Aquaculture Applications (5m Publishing, 2018).
Treasurer, J. (ed.) Cleaner Fish Biology and Aquaculture Applications (5M Publishing, 2018).
Lie, K. K. et al. Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish. BMC Genomics 19, 186 (2018).
Article CAS PubMed PubMed Central Google Scholar
Knutsen, T. M. Lumpfish (Cyclopterus lumpus) draft genome assembly. Figshare https://doi.org/10.6084/m9.figshare.7301546.v1 (2018).
Article Google Scholar
Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci. 7, 471496 (2015).
Article PubMed Google Scholar
Asche, F., Hansen, H., Tveteras, R. & Tveteras, S. The salmon disease crisis in Chile. Mar. Resour. Econ. 24, 405411 (2009).
Article Google Scholar
Verbruggen, B. et al. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses 8, 23 (2016).
Article CAS PubMed Central Google Scholar
degrd, J., Baranski, M., Gjerde, B. & Gjedrem, T. Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac. Res. 42, 103114 (2011).
Article Google Scholar
Yez, J. M. et al. Genetic co-variation between resistance against both Caligus rogercresseyi and Piscirickettsia salmonis, and body weight in Atlantic salmon (Salmo salar). Aquaculture 433, 295298 (2014).
Article Google Scholar
Gjedrem, T. Disease resistant fish and shellfish are within reach: a review. J. Mar. Sci. Eng. 3, 146153 (2015).
Article Google Scholar
Bishop, S. C. & Woolliams, J. A. Genomics and disease resistance studies in livestock. Livest. Sci. 166, 190198 (2014).
Article PubMed PubMed Central Google Scholar
Anacleto, O. et al. Genetic differences in host infectivity affect disease spread and survival in epidemics. Sci. Rep. 9, 4924 (2019).
Article CAS PubMed PubMed Central Google Scholar
Storset, A., Strand, C., Wetten, M., Kjglum, S. & Ramstad, A. Response to selection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 272 (Suppl. 1), S62S68 (2007).
Article Google Scholar
Houston, R. D. et al. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178, 11091115 (2008). Together with reference 219, this study describes a very large effect QTL for disease resistance in aquaculture populations, leading to widespread adoption of marker-assisted selection to help reduce disease incidence.
Article PubMed PubMed Central Google Scholar
Moen, T., Baranski, M., Sonesson, A. K. & Kjglum, S. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10, 368 (2009).
Article CAS PubMed PubMed Central Google Scholar
Houston, R. D. et al. The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity 105, 318327 (2010).
Article CAS PubMed Google Scholar
Gheyas, A. A. et al. Segregation of infectious pancreatic necrosis resistance QTL in the early life cycle of Atlantic Salmon (Salmo salar). Anim. Genet. 41, 531536 (2010).
Article CAS PubMed Google Scholar
Houston, R. D. et al. Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon. BMC Genomics 13, 244 (2012).
Article CAS PubMed PubMed Central Google Scholar
Moen, T. et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200, 13131326 (2015).
Article CAS PubMed PubMed Central Google Scholar
Robledo, D. et al. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with infectious pancreatic necrosis virus reveals a marked contrast in immune response. BMC Genomics 17, 279 (2016).
Article CAS PubMed PubMed Central Google Scholar